MF58 Glass Shell Precision NTC Thermistor

1. General

♦ Description

Glass Shell Precision NTC Thermistors The MF58 is a NTC thermistor which is manufactured using a combination of ceramic and semiconductor techniques. It is equipped with tinned axial leads and then wrapped with purified glass.

- ① Type: MF58 Glass Shell Precision NTC Thermistor
- ② Resistance at 25degree 103 means 10KOhm
- (3) Resistance tolerance F means $\pm 1\%$
- 4 Beta value 3950K
- (5) Beta tolerance F means ±1%

♦ Characteristics

- ➤ Good stability and repeatability
- ➤ High reliability
- ➤ Wide range of resistance: 0.1~1000KOhm
- > Tight tolerance on resistance and Beta values
- ➤ Usable in high-temperature and high-moisture environments
- Small, light, strong package,
- > Suitable for automatic insertion on thru-hole PCBs
- Rapid response
- ➤ High sensitivity

♦ Application

- Household Appliances
- > Office Equipment
- > Industrial
- ➤ Liquid Level Detection
- Mobile Phone Battery
- > Integrated Circuits

Dimension(Unit:mm)

> Specifications

- \triangleright Zero power resistance range (R25): 0.1~1000KΩ
- Available tolerances of R25:

$$F = \pm 1\%$$
 $G = \pm 2\%$ $H = \pm 3\%$ $J = \pm 5\%$ $K = \pm 10\%$

- ➤ B value (B25/50°C) range: 3100~4500K
- Available tolerances of B value: $\pm 0.5\%$, $\pm 1\%$, $\pm 2\%$
- ➤ Dissipation factor: ≥2mW/°C (In Still Air)
- ➤ Thermal time constant: ≤20S (In Still Air)
- ► Operating temperature range: -55° C ~ $+250^{\circ}$ C
- ➤ Rated Power: ≤50mW

MF58 Glass Shell Precision NTC Thermistor

Mechanical Requirements

Item	Requirements	Test Method
1.Solder-ability	The terminals shall be uniformly tinned, and its area≥95%	Dipping the NTC terminals to a depth of 15mm in a soldering bath of 245±5°C and to the place
	timiou, and its area_5570	of 6mm far from NTC body for 3±0.5s (See
		IEC68-2-20 /GB2423.28 Ta)
2.Resistance To	No visible mechanical damage.	Dipping the NTC terminals to a depth of 15mm
Soldering Heat	ΔR/RN ≤20%	in a soldering bath of 260±5°C and to the place
	$(\Delta R = RN-RN')$	for 6mm below from NTC body for
		3±0.5s.After recovering4-5h under 25±2°C.
		The rated zero power resistance value RN' shall
		be measured.
		(See IEC68-2-20 /GB2423.28 Tb)
3.Strength of	No break out	Fasten the body and apply a force gradually to
lead terminal	ΔR/RN ≤20%	each lead until 10N and then keep for 10sec,
	$(\Delta R = RN-RN')$	Hold body and apply a force to each lead until
		90°slowly at 5N in the direction of lead axis
		and then keep for 10sec, and do this in the
		opposite direction repeat for other terminal.
		After recovering 4~5h under 25±2℃, the rated
		zero power resistance value RN' shall be
		measured.
		(See IEC68-2-21/GB2423.29 Ua / Ub)

MF58 Glass Shell Precision NTC Thermistor

♦ Reliability Test

Item	Requirements	Test Method
1.Temp. Cycling	No visible mechanical	Ta:- 40 ± 3 °C/ 30 min $\rightarrow 25\pm2$ °C/ 5 min \rightarrow
Testing	damage.	Tb:160±3°C/ 30min→25±2°C/ 5min
	Δ RN / RN \leq 20%	Cycles: 5times
	$(\Delta R = RN-RN')$	After recovering 4~5 h under 25±2°C, the rated
		zero power resistance value RN' shall be
		measured.
2.Electrical Cycling		Ambient temp. Range:25 °C±2 °C.
Testing		Cycles: 2,000times On / Off: 5 s / 55 s
		Test Current: 7A
		After recovering 4~5h under 25±2°C, the rated
		zero power resistance value RN' shall be
		measured.
3.LoadLife		Ambient temp. Range:25 ℃±2 ℃; 7A/
(Endurance) Testing		1,000±24h
		After recovering 4~5 h under 25±2°C, the rated
		zero power resistance value RN' shall be
		measured.
4. Humidity Testing	No visible mechanical	Ambient temp. range : 40°C±2°C
_	damage.	R.H.:93±3%, Energized time:1000±24 h
	ΔRN / RN ≤20%	After recovering 4~5 h under 25±2°C, the rated
	$ (\Delta R = RN-RN')$	zero power resistance value RN' shall be
		measured.

- **♦** Package
- **Bulk Packaging:**

Series	Quantity/poly bag
MF58	500

♦ STORAGE CONDITIONS:

► Temperature: $-10^{\circ}\text{C} \sim +40^{\circ}\text{C}$

➤ Humidity: ≤70%RH

➤ Term: ≤6 months (First-in/ First-out)

Place:

Do not exposing the components to the following conditions, otherwise, it may result in deterioration of characteristics.

- 1) Corrosive gas or deoxidizing gas.
- 2) Flammable and explosive gases.
- 3) Oil, water and chemical liquid.
- 4) Under the sunlight.
- ➤ Handling after seal open: After unpacking of the minimum package, reseal it promptly or store it inside a sealed container with a drying agent.

♦ WARNING

Do not apply the components under the following conditions, otherwise, it may result in deterioration of characteristics, destruction of components or in the worst case, to catching fire.

- Exceeding Imax.
- > Exceeding rated temperature range.
- ➤ Inferior thermal dissipation (Due to badly inferior thermal dissipation, some part of the components body will become overheated and then be damaged.)